Search results for "Harmonic Flow"

showing 5 items of 5 documents

Regular 1-harmonic flow

2017

We consider the 1-harmonic flow of maps from a bounded domain into a submanifold of a Euclidean space, i.e. the gradient flow of the total variation functional restricted to maps taking values in the manifold. We restrict ourselves to Lipschitz initial data. We prove uniqueness and, in the case of a convex domain, local existence of solutions to the flow equations. If the target manifold has non-positive sectional curvature or in the case that the datum is small, solutions are shown to exist globally and to become constant in finite time. We also consider the case where the domain is a compact Riemannian manifold without boundary, solving the homotopy problem for 1-harmonic maps under some …

Applied Mathematics010102 general mathematicsMathematical analysisBoundary (topology)Total variation flow; harmonic flow; well-posednessRiemannian manifoldLipschitz continuitySubmanifold01 natural sciencesManifoldDomain (mathematical analysis)35K51 35A01 35A02 35B40 35D35 35K92 35R01 53C21 68U10010101 applied mathematicsMathematics - Analysis of PDEsFlow (mathematics)FOS: MathematicsMathematics::Differential GeometrySectional curvature0101 mathematicsAnalysisAnalysis of PDEs (math.AP)MathematicsCalculus of Variations and Partial Differential Equations
researchProduct

Solutions to the 1-harmonic flow with values into a hyper-octant of the N-sphere

2013

Abstract We announce existence results for the 1-harmonic flow from a domain of R m into the first hyper-octant of the N -dimensional unit sphere, under homogeneous Neumann boundary conditions. The arguments rely on a notion of “geodesic representative” of a BV-vector field on its jump set.

Unit spheren-sphereGeodesicApplied MathematicsMathematical analysisA domainharmonic flowsOctant (solid geometry)non-convex variational problems1-harmonic flowlower semi-continuity and relaxation; total variation flow; 1-harmonic flow; non-convex variational problems; image processing; geodesic; partial differential equations; harmonic flowsimage processingHomogeneoustotal variation flowNeumann boundary conditionJumppartial differential equationslower semi-continuity and relaxationgeodesicMathematics
researchProduct

THE 1-HARMONIC FLOW WITH VALUES IN A HYPEROCTANT OF THE N-SPHERE

2014

We prove the existence of solutions to the 1-harmonic flow — that is, the formal gradient flow of the total variation of a vector field with respect to the [math] -distance — from a domain of [math] into a hyperoctant of the [math] -dimensional unit sphere, [math] , under homogeneous Neumann boundary conditions. In particular, we characterize the lower-order term appearing in the Euler–Lagrange formulation in terms of the “geodesic representative” of a BV-director field on its jump set. Such characterization relies on a lower semicontinuity argument which leads to a nontrivial and nonconvex minimization problem: to find a shortest path between two points on [math] with respect to a metric w…

Unit spherenonconvex variational problemsriemannian manifolds with boundaryGeodesicn-sphereharmonic flows68U1053C2253C4435K9235K67Neumann boundary conditionpartial differential equations49J45MathematicsNumerical Analysisnonlinear parabolic systems; lower semicontinuity and relaxation; total variation flow; 1-harmonic flow; image processing; harmonic flows; partial differential equations; image processing.; geodesics; riemannian manifolds with boundary; nonconvex variational problemslower semicontinuity and relaxation58E20Applied MathematicsMathematical analysis49Q201-harmonic flowimage processingFlow (mathematics)35K55Metric (mathematics)total variation flowVector fieldnonlinear parabolic systemsBalanced flowAnalysisgeodesics
researchProduct

Rotationally symmetric 1-harmonic flows from D2 TO S 2: Local well-posedness and finite time blowup

2010

The 1-harmonic flow from the disk to the sphere with constant Dirichlet boundary conditions is analyzed in the case of rotational symmetry. Sufficient conditions on the initial datum are given, such that a unique classical solution exists for short times. Also, a sharp criterion on the boundary condition is identified, such that any classical solution will blow up in finite time. Finally, nongeneric examples of finite time blowup are exhibited for any boundary condition.

Well-posed problemDirichlet problemApplied MathematicsMathematical analysisMathematics::Analysis of PDEsRotational symmetryMixed boundary conditionrotational symmetryferromagnetism; blowup; 1-harmonic flow; image processing; local existence; dirichlet problem; partial differential equations; rotational symmetryferromagnetism1-harmonic flowblowupimage processingComputational Mathematicssymbols.namesakeFlow (mathematics)Dirichlet boundary conditionsymbolspartial differential equationsInitial value problemBoundary value problemdirichlet problemAnalysislocal existenceMathematics
researchProduct

Measurement of the distributions of event-by-event flow harmonics in lead-lead collisions at = 2.76 TeV with the ATLAS detector at the LHC

2013

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW, Poland; GRICES and FCT, Portu…

Atlas detectorUnfolding01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)Heavy-ion collisionNaturvetenskap[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment (nucl-ex)RELATIVISTIC HEAVY-ION COLLISIONSNuclear ExperimentNuclear ExperimentQCunfoldingPhysicsLarge Hadron ColliderAtlas (topology)4. EducationSettore FIS/01 - Fisica SperimentaleEvent-By-Event FluctuationElliptic flowHeavy-Ion CollisionsHarmonic FlowCharged particlehadron-hadron scattering; harmonic flow; event-by-event fluctuation; unfolding; heavy-ion collisionHarmonicsImpact parameterNatural Sciencesharmonic flowParticle Physics - ExperimentNuclear and High Energy PhysicsParticle physicsCiências Naturais::Ciências Físicas530 Physics:Ciências Físicas [Ciências Naturais]FOS: Physical sciencesComputer Science::Digital Libraries530Nuclear physics0103 physical sciencesHeavy ion collisionsddc:530Rapidity010306 general physicsevent-by-event fluctuationCiencias ExactasScience & TechnologyHadron-Hadron Scattering010308 nuclear & particles physicsFísicaheavy ion collisionHeavy-ion collision; harmonic flow; event-by-event fluctuation; unfolding; Hadron-Hadron Scattering
researchProduct